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On kinetic Ising models in one dimension 

J C Angles d'Auriac and R Rammal 
Centre de Recherches sur les Trbs Basses Temptratures, CNRS, BP 166 X, 38042 Grenoble 
Cedex, France 

Received 2 September 1987 

Abstract. It is shown that Glauber dynamics in I D  Ising spin systems is not universal. 
This is illustrated on a periodic model with a basic unit cell { J , ,  . . . , Jn} containing an 
arbitrary set of n ferromagnetic coupling constants. The dynamic critical exponent z is 
calculated exactly as z = 1 +max{J,}/min{J,}, the known value z = 2 is recovered only for 
n = 1. The extension of this result to other types of dynamics is briefly discussed. 

1. Introduction 

Kinetic Ising models correspond to the simplest dynamic pictures of real systems and 
are believed to provide a sensible description of the dynamics of a large number of 
physical systems [l]. As far as analytic results are concerned, only the pure Ising 
chain with different spin-flip dynamics has been completely solved within the framework 
of Glauber dynamics [2]. In particular, the critical dynamic exponent z for various 
general types of single-spin-flip dynamics has been determined rigorously in some 
cases. Deviations [3] from the dynamic scaling [4] value z = 2 have been obtained and 
these results were confirmed subsequently [5] using simple physical arguments. In this 
respect, the occurrence of different dynamic universality classes is closely associated 
with different types of dynamics. In this paper we address the universality question 
from another point of view originating from the fact that the static critical behaviour 
of I D  Ising systems is controlled by a zero-temperature fixed point. For this we have 
investigated the standard Glauber dynamics on a simple periodic model, in which the 
basic cell contains different coupling constants J1, J 2 ,  . . . , J,, where n is an integer. 
The critical dynamic exponent z associated with this regular structure can actually be 
calculated exactly for general n. It turns out that the precise value of z is a non-trivial 
combination of Ji implying in particular its non-universality. The physical origin of 
this peculiar result can, however, be traced back to the low-T dynamics of defects 
(kinks). It is important to notice that a similar situation arises in the spin dynamics 
on percolation clusters at threshold [6,7] and some fractal lattices where a more 
singular dynamics takes place with z = J /  T, i.e. a temperature-dependent exponent. 
The common feature in these two cases is actually the same and leads to a violation 
of dynamic scaling. In fact, in both these cases the static critical behaviour is governed 
by a zero-temperature fixed point. The same holds for the dynamics which is actually 
dominated by the motion of thermally activated defects and then strongly dependent 
on topology and interaction strengths. 

This paper is organised as follows. The model is introduced in Q 2 where some 
equilibrium properties are briefly presented. An explicit expression is obtained for the 
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critical dynamic exponent z in this section. In  5 3 the domain boundary diffusion 
arguments of [ 5 ]  are extended to the present model, yielding the exact result for z. 
Finally, 5 4 contains a discussion of the results with some comments on possible 
generalisations to other types of single-spin-flip dynamics. 

2. Glauber dynamics of the periodic model 

The periodic I D  Ising model studied in this section is defined by the Ising Hamiltonian 

The interaction strengths between the nearest-neighbour spins have the values 
J1, J 2 , .  . . , J,, and are periodically distributed with a basic cell [J1, J 2 , .  . . , J,,]. This 
system can be regarded as a linear array of identical king spin ‘molecules’ which 
consist of n Ising spins, with intramolecular interaction strengths J , ,  J z ,  . . . , -I,-, and 
intermolecular interaction strength J,,, i.e. J ,  = Jq for 1 s i = pn + q s n. 

The static critical properties of the above model are trivially obtained from the 
exact expression of the partition function. Here we quote just two results which are 
of some interest for the spin dynamics. The average spin values at all sites vanish: 
(a,)  = 0 and the spin correlations are (upr+,) = tanh K , ,  K ,  = JI/ T. Similarly the thermal 
spin-spin correlation length t( T )  diverges near the critical temperature T, = 0 as 

where 

K,= min ( K , ) .  
l = l = n  

Since the above interacting spin system has no intrinsic dynamics, a stochastic 
approach is usually used in order to mimic the interaction with the heat bath. In the 
single-spin-flip dynamics initiated for the Ising chain by Glauber, all the information 
about the chain at time t is contained in the probability function P ( { a , } ,  t )  which is 
the probability that the spin configuration of the chain is {a , ,  u2, . . . , a N }  at time t. 
The time evolution of P({a , } ,  t )  is given by the master equation 

d 
-P({u ,} ,  t ) = C  w , ( a , ,  . . . , -U,, . . . , u N ) P ( u , ;  U > ,  . . . , --U,, . . . , (TN, t )  
d t  1 

~ ~ ~ ~ ~ ‘ 1 ~ ~ ~ ~ ~ a ~ ~ ~ ~ ~ ~ a N ~ P ~ a I ~ a 2 ~ ~ ~ ~ ~ a ~ ~ ~ ~ ~ ~ ( J N ~  t ) .  (2) 
I 

In (2), @,(U,) is the transition rate for the process { a , , .  . . , a,, . . . , u N ) +  
{ a , , .  . . , -m,,. . . , aN}.  For a linear chain with nearest-neighbour interactions, the spin 
dependence of w,(u,) is assumed to be a function of the local field h, at site j .  The 
most general form satisfying the requirement of detailed balance and linear dependence 
on a, is the following: 

w,(a,) = TO’[ 1 -U, tanh( h,/ T ) ]  (3) 

where h, = 2,  J p ,  is the local field. 
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The explicit expression of (3) can be written as 

q(q) = 7O1[1 -;q(Y;u,-l+ Y / - ~ / + l ) l  

y,F= tanh( K,-l + K,)itanh(K,-,  - K,). 

(4) 

with the notations 

( 5 )  

Equations (2.5) allow in principle for a complete solution of the Glauber dynamics. 
Here we simply consider the magnetisation relaxation during time 

(9) 

- .  

q, ( t )  = c a ; P ( { q > ,  t )  l < j < N  
( 0 1 )  

which, using ( l ) ,  is a solution of the linear system (7,) = 1): 

d 
dr  - 9,(t) = -2(c,(rb,(U,)) 

= - 9, ( f )  + tc Y, 9, ( t )  + r:9,- 1 ( t 1). ( 7 )  

Next we specialise ( 7 )  to the present model. For this we define the sublattice magneti- 
sation 

being the number of basic cells. Using ( 7 )  one obtains 
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and this corresponds to the dominant relaxation rate. Accordingly the problem is 
reduced to the calculation of the sum A Y 1  which in turn can be expressed as the 
ratio Al/Ao of the first two coefficients of the characteristic polynomial 

P ( A ) =  A ~ A ~  
i =  I 

of the matrix M. 

formulation of ( 8 )  and this leads to 
A convenient way for the calculation of P(A) is provided by a transfer-matrix 

r ,  = X / a .  
i = l  

Here X and 9 are defined as follows. X is the coefficient of A in the polynomial 

Tr fl Ml(A) 
i = n  

and 9 is the constant coefficient in the sum: 

Tr fi M,(A)-2 fi bi. 
i = n  1 = 1  

In these expressions we have used the following notations: 

where 

and 

x, = 1 - tanh K , .  

Since we are only interested in the low-temperature limit, the above formulation allows 
for a simple expansion of X and 9 in powers of x,. For this, it is convenient to expand 
the product 

1 n M!(A) 
, = n  

on the algebra generated by the matrices 

c 3 c :) (: 3. 
A straightforward but lengthy calculation leads to the simple expressions, valid at x, << 1 : 

9 1 2 "  = PS2 

u V / 2 " + I =  1 P(S-x , ) /x ,+nP 
n 

I =  I 
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where 
n n 

P = n x z  and S =  1 x,. 
r = l  , = I  

When used in ( lo) ,  this result leads to a simple expression for T M :  

T ~ ~ e x p ( 2 K , + 2 K ~ )  (13) 

with K ,  = min, K ,  and KM = max, K, respectively. 
This implies in particular the announced value for the critical dynamic exponent 

z ( T M  - 5'( T ) ) :  

z = 1 +max{J,}/min{J,}. (14) 

This non-trivial expression for z calls for some remarks. As expected, (14) reproduces 
the known result z = 2 for J ,  = J2 = . , . = J, but in general z is enhanced in comparison 
with the pure chain result. This increase of z, without disorder, has already been 
pointed out in the simple case n = 2 [9]. In this respect (14) is the natural extension 
of this result for arbitrary n. Furthermore, in contrast with the static critical exponents 
which are independent of {JL}, the exponent z assumes a non-universal value. As will 
be seen in the next section, similar expressions are expected to hold for other kinetic 
models such as Kawasaki dynamics [ lo]  as well as Potts spin systems. 

3. Physical origin of non-universality 

The Ising chain in equilibrium can be viewed as being composed of domains of parallel 
spins. Kinks or domain boundaries are simply bonds joining two such domains of 
opposite magnetisations. The probability of finding a kink at the ith bond is given by 
;( 1 - (aial+,)) = and the most probable kink is associated with the smallest K,.  
Therefore at low T, the domains are of average length ( ( T )  and the magnetisation 
relaxation is governed by the motion of kinks. For instance, in the pure chain the 
dominant process by which the domains decay in time is by diffusion of the kinks and 
this implies T - t2, i.e. z = 2 [ 5 ] .  This argument must be modified in the case discussed 
here and (13) can actually be recovered as described below. 

Due to the presence of different values of bond strengths, the motion of kinks is 
not a simple random walk. The transition rates to the left and to the right depend, of 
course, on the location of the kink, but in general they are not equal. At low enough 
temperature, the timescale of the kink motion is then T - (( T ) /  R - ('( T )  where R is 
the rate of motion. For sufficiently low T, R is governed by the largest energy barrier, 
i.e. the strongest bond. This rate is therefore given by R - exp( -2KM) and (13) follows 
immediately. 

This argument, reproducing (13) in simple terms, shows clearly the origin of the 
non-universal value of the exponent z. The precise value of z involves a length scale 
5( T )  and a timescale T( T ) .  In the present case t( T )  is controlled by the smallest 
interaction K ,  whereas 7( T )  is fixed by the largest energy barrier which turns out to 
be dominated by the strongest bond KM . These features are implied by the I D  topology 
of the lattice and the discrete nature of the dynamic degrees of freedom. In this respect, 
it is not difficult to extend the above argument to other situations sharing the same 
features as the model calculated in § 2 .  
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4. Discussion 

As pointed out in § 1, the peculiar result of this paper is a direct consequence of the 
zero-temperature fixed point. This feature of the Ising chain is already visible in the 
renormalisation group analysis of the pure case [ 111. Universal values of z are, however, 
expected to appear in 2~ lattices such as the checkerboard Ising model where T, is 
known exactly for arbitrary coupling strengths [ 121. We conclude by noting that more 
interesting situations arise in disordered systems (spin glasses, random field Ising 
models, charge density waves, etc) where zero-temperature fixed points can drive the 
dynamics of these systems. In this respect we mention the recent investigation [13] 
of the glassy dynamics of charge density wave systems where both the relaxation 
functions and dynamic exponents are fixed by the probability distribution of pinning 
strengths. 
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